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Abstract—In this paper, an analytic homogenization model 

under bending and in-plane shear force for the double 

corrugated cardboard plates is presented. The proposed model 

allows us to replace the 3D double corrugated cardboard by a 

2D homogenized plate, which reduces a lot of time to calculate 

as well as time to build the geometry. Based on the theory of 

stratification and then improved by using the theory of 

sandwich, we calculated the rigidities of corrugated cardboard 

plate and then implemented into a 4-node shell element called 

S4R in Abaqus for an equivalent orthotropic plate. The results 

obtained by the present model are compared to those given by 

3D shell simulations. The comparison shows the efficiency and 

accuracy of our homogenization model. The homogenization 

model can be used not only for corrugated cardboard plates, 

but also for industrial composite structures. 

 

Keywords—Analytical homogenization, corrugated cardboard, 

orthotropic plates. 

I. INTRODUCTION 

ANDWICH structures have been used over a long time 

applications where the weight of the member is critical, 

such as packaging, civil, naval, automotive and aerospace 

industries due to their low mass to stiffness ratio and high 

impact absorption capacity [1]. Some instances of their 

applications in daily life are corrugated sandwich cores used 

for packaging, metal corrugated roofs, hulks, automotive 

chassis and bumpers. In nature, where mechanical design 

required to be optimized, sandwich structures are used such as 

the human skull, which is made up of two layers of dense 

compact bone separated by a “core” of lower density material. 

A branch of sandwich structures is the corrugated cardboard 

panels consisting of three or more layers. The flat layers are 

called liners, which are partitioned by corrugated cores that are 

referred to as flutes. Paperboard structural material is a kind of 

environmental friendly packaging material made of reusable 

paper and water-based glue, which are 100% recyclable, 

reusable and fully biodegradable. So, it can settle the 

important strategic issue of the environment pressure, 

particular in relation to concerns over the amount of packaging 

waste, and has economic and environmental advantages over 
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plastic foams [2-3]. It belongs to a kind of inexpensive 

packaging material with corrugated sandwich structure, holds 

lightweight, high strength-to-weight and stiffness-to-weight 

ratios [4]. The corrugated core increases the moment of inertia 

of sandwich panel. Thus, the bending stiffness of corrugated 

panel has a direct relation with the third power of panel 

thickness. Although increasing the thickness of the sandwich 

panel by using a corrugated core with a low specific weight, 

results in a little increase in weight of panel, but this increases 

the strength of panel significantly [1]. The manufacturing 

process gives three characteristic directions (Fig. 1): the 

machine direction (MD), the cross direction (CD), and the 

thickness direction (ZD). 

Corrugated cardboard is widely used in the packaging 

industry, such as corrugated cardboard boxes, insert cardboard 

sheet in pallet systems. It is essential to predict the mechanical 

behavior of these systems in order to use such materials 

effectively. The numerical modeling of this kind of orthotropic 

composite plates by shell elements is too tedious and time 

consuming. Many homogenization models were obtained by 

analytical, numerical and experimental methods [5-9]. By 

using some FE models and commercial FE software, the 

mechanical behaviors of corrugated cardboard were studied by 

other authors [10-13], but it just limited with the single 

corrugated cardboard. 

This paper presents an efficient homogenization model for 

the mechanical behavior of a corrugated cardboard composed 
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of five layers (double flutes). The homogenization is carried 

out by calculating analytically the global rigidities of the 

corrugated cardboard and then this 3D structure is replaced by 

an equivalent homogenized 2D plate. The simulations under 

flexion and in-plane shear force of Abaqus-3D and H-2D 

model of double corrugated cardboard will be studied in this 

article. This 2D homogenization model is very fast and has 

close results comparing to the 3D model using the Abaqus 

shell elements. 

II. RECALL OF MINDLIN’S THEORY AND THEORY OF 

LAMINATED PLATES 

For a composite plate, the Mindlin theory is often used. It is 

assumed that a right segment and perpendicular to the mean 

surface remains straight but not perpendicular to the medium 

surface after deformation. This assumption allows to consider 

the transverse shear deformations. The membrane forces, 

bending moments and torsional and transverse shear forces are 

obtained by integration of the constraints on the thickness: 
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If we consider a composite sheet consisting of several 

layers, the resulting forces defined above may be combined in 

layers: 
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After the integration along the thickness, we obtain the 

overall stiffness matrix that links the generalized deformations 

with resultant forces: 
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The law of behavior above can be written in matrix form: 
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where {N}, {T} and {M} are the internal forces and moments; 

[A], [D], [B] and [F] are the stiffness matrices related to the 

membrane forces, the bending-torsion moments, the bending-

torsion-membrane coupling effects and the transverse shear 

forces respectively; {ε} is the membrane strain vector, {κ} is 

the curvature vector and {γs} is the transverse shear strain 

vector. 

III. HOMOGENIZATION MODEL FOR THE DOUBLE 

CORRUGATED CARDBOARD 

A 3D geometrical modeling of the liners and the flutes of 

the corrugated cardboard is a very tedious and time-consuming 

task. In our homogenization model, a corrugated cardboard 

panel is replaced by a 2D plate. Instead of using a local 

constitutive law (relating the strains to the stresses) at each 

material point, the homogenization leads to global rigidities 

(relating the generalized strains to the resultant forces) for the 

equivalent homogeneous plate. 

The corrugated cardboard is more complex than a laminated 

plate because of the fluting cores and the cavities between the 
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three liners. Consequently some global effective stiffnesses in 

the matrix (9) obtained by the theory of laminated plates 

should be modified [9, 12]. 

 

Considering a double corrugated cardboard and using a, b, 

c, d, and e to represent the lower liner, the lower flute, the 

intermediate liner, the upper flute and the upper liner (Fig. 2). 

The geometry of each flute is defined by the following 

equations: 
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To homogenize a double corrugated panel, we consider a 

representative volume element (RVE). This volume must be 

sufficiently small relative to the dimensions of the entire panel. 

Once the overall stiffness of each slice are obtained by 

integrating the thickness, homogenization along x is performed 

to calculate the average stiffness of all tranches over a period: 
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We note that, in the Eq. 11, when periods Pd and Pb of 

corrugated layers are different, it is necessary to take an RVE 

having the length P that is the multiple of these periods. 

3.1 Traction and bending stiffnesses related to Nx, Mx, Ny, 

My 

Since the vertical position (z) of a groove portion (ds) is a 

function of x and a thickness over its vertical section is a 

function of the angle of inclination of the groove x (Fig. 2), 

the equation (8) becomes: 
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For each of the two grooves, a homogenization on their 

period (along x) should be calculated numerically according to 

equation (11).  

3.2. Shear stiffness in the xy plane relative to Nxy or Nyx 

In a laminated composite plate, the integration through the 

thickness is used to calculate shear stiffness in the plane. This 

procedure consists in summing the product of the shear 

modulus and the thickness of all layers. However, it is no 

longer valid for corrugated cardboard because of the cavities. 

Considering the corrugation of a corrugated board of length 

P/2 (along x) and width b (along y) (Fig. 3). A pair of shear 

forces per unit of width Nxy (along y) applied to the section 

MD gives a displacement v. The shearing of the groove can be 

easily treated by flattening the groove (Fig. 3b): 
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12 12 12 12

N v
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Fig. 2 Geometry of a double corrugated cardboard 
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where G12 is the shear modulus in the plane of the groove, l is 

the length of the flattened groove. 

The shear deformation in the xy plane of the 3D groove 

(Fig. 3a) is defined by: 

xy

v

0.5P
                        (14) 

Equations (13) and (14) make it possible to obtain the law 

of behavior for the shear in the xy plane: 
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It can be shown that the average of the shear force on the 

CD section is equal to the shear force (constant) on the MD 

section. In fact, according to the reciprocity theorem, the flux 

of shear stress along the groove on CD is equal to that on MD 

(
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gives the shear force Nxy: 
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So the relation Nxy = Nyx on MD and CD is proved and the 

shear stiffness is unique even if the two sections are very 

different. 

For a double corrugated board, the shear stiffness in the 

plane of the cardboard is given by the sum of the rigidities of 

five layers: 

xy 33 xy

b b b d d d
a a c c e e12 12

33 xy xy xyb d

N A ;

G P t G P t
A G t G t G t

l l



  

 

+ +
       (17) 

IV. RESULTS AND DISCUSSION 

To validate our H-model, we first discretize the five layers 

of corrugated cardboard by shell elements S4R of Abaqus to 

obtain the model Abaqus-3D; Then, we discretize the middle 

surface of corrugated cardboard by shell elements S4R of 

Abaqus combined with our H-model (using "user's subroutine 

UGENS") to obtain H-2D model. The confrontation of the 

results allow us to evaluate the efficiency and accuracy of our 

homogenization model. 

The calculations and comparisons are made on a double 

corrugated panel having CD section illustrated in Fig. 4. 

Geometric data are: period (or step) and height of the lower 

groove Pb = 9 mm and hb = 5.2 mm, those of the upper groove 

Pd = 6 mm and hd = 2.9 mm, thicknesses ta = tc = te = 0.25 mm,  

tb = td = 0.26 mm. The properties of materials are given in 

Table 1 [9]. The rigidities of 2D equivalent plate are 

calculated as shown in Table 2. 

We use a corrugated panel having length L = 162 mm and 

width B = 180 mm. This panel is tested under different types 

of loading: traction, bending and in-plane shear. For the 

simulation of the homogenized plate using our H-2D model, 

the middle surface is discretized into 7290 quadrilateral 

elements S4R and 7462 nodes. But for the Abaqus simulation-

3D, 93825 quadrilateral elements S4R and 86925 nodes are 

needed. Indeed, to fully describe the geometry of the groove, it 

takes at least 16 elements over a period of groove. 

 

   

 

Table 1 Material properties of the five layers of the corrugated cardboard 

Layers 
E1  

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

G12 

(MPa) 

G13 

(MPa) 

G23 

(MPa) 
12 13 23 

a 8250 2900 2900 1890 7 70 0.43 0.01 0.01 

b, d 4500 4500 3000 1500 3.5 35 0.40 0.01 0.01 

c, e 8180 3120 3120 1950 7 70 0.43 0.01 0.01 

 

Fig. 3 Equivalent model for the shear of the groove in the  

xy plane 

 

Fig. 4 Geometry of the CD section of corrugated cardboard 
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  Table 2 Rigidities of the equivalent plate 

Rigidities 
A11 

(N/mm) 

A12 

(N/mm) 

A22 

(N/mm) 

A33 

(N/mm) 

B11 

(N) 

B12 

(N) 

B22 

(N) 

D11 

(N.mm) 

D12 

(N.mm) 

D22 

(N.mm) 

Values 6606.2   1055.1    5989.8    1964.9    2507.1     526.1    2914.5   75214.1   11870.5   49672.4   

 

Fig. 5 Simulation of Abaqus-3D and H-model in traction for the CD section 

 

Fig. 6 Simulation of Abaqus-3D and H-model in bending for the MD section 

 

Fig. 7 Simulation of Abaqus-3D and H-model in in-plane shear for the MD section 
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Table 3 Comparison between Abaqus-3D and H-2D-Model for the plate under traction, flexion and in-plane shear loading 

 Abaqus-3D H-2D-Model Error (%) 

Traction 

F=3000N 

MD 
Displacement U1 (mm) 0.4304 0.4270 -0.79 

CPU time (s) 70.2 1.6 43.9 times 

CD 
Displacement U2 (mm) 0.5704 0.5690 -0.24 

CPU time (s) 65.6 1.5 43.7 times 

In-plane shear 

F=3000N 

MD 
Displacement U2 (mm) 1.934 1.908 -1.34 

CPU time (s) 59 1.4 42.14 times 

CD 
Displacement U1 (mm) 2.684 2.656 -1.04 

CPU time (s) 63 1.4 45 times 

Bending  

M=10 KN.mm 

MD 
Displacement U3 (mm) 21.43 21.53 +0.47 

CPU time (s) 58.2 1.6 36.38 times 

CD 
Displacement U3 (mm) 10.07 10.13 +0.59 

CPU time (s) 57.5 1.5 38.33 times 

 

 

In both types of simulations (Abaqus-3D model and H-2D 

model), a rigid plate is bonded to the MD or CD section at the 

right end of the cardboard panel to better apply forces or 

moments (Fig. 5, 6, 7). The calculations by our H-2D model 

are very fast while calculations by Abaqus-3D are much 

longer. The comparisons of results obtained by the two models 

and the percentages of error in H-2D model compared to 

Abaqus-3D results for the traction, bending and in-plane shear 

loading are presented in Table 3, we note that the numerical 

results given by the two models are very close. 

V. CONCLUSION 

In this article, we have proposed an analytic 

homogenization model for the traction, flexion and in-plane 

shear problems of double corrugated core cardboards. The 

comparison of the results obtained by the analytic formulas, by 

the Abaqus 3D simulations and by the Abaqus–Ugens 2D 

simulations has proved the validation of the present 

homogenization model in the case of traction, flexion and in-

plane shear loading. The present H-model allows us to largely 

reduce not only the time for the geometry creation and FE 

calculation, but also the computational hardware requirements 

for the large-scale numerical modelling of packaging systems 

composed of double corrugated core cardboards. 
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